Testing of Small and Large Sign Support Systems FOIL Test Number: 92F035

U.S. Department of Transportation

Federal Highway Administration

Research and Development
Turner-Fairbank Highway Research Center
6300 Georgetown Pike
McLean, Virginia 22101-2296

15. Supplementary Notea

Contracting Officer's Technical Representative (COTR) - Richard King, HSR-20
16. Abstract

This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at $20 \mathrm{mi} / \mathrm{h}(32.2 \mathrm{~km} / \mathrm{h})$, test 92 F 035 . The vehicle used for this test was a 1984 Honda Civic. The purpose of this test was to evaluate the low-speed safety performance of a dual-leg 3 -in (76.2-mm) dianeter fiberglass sign support with concrete foundations. The performance evaluation was based on the latest requirements for breakaway supports as specified in Volume 54, Number 3 of the Federal Register dated January 5, 1989. These criteria specify, in part, that the occupant change in velocity must be $16 \mathrm{ft} / \mathrm{s}(4.9 \mathrm{~m} / \mathrm{s})$ or less, that the significant test article stub height remaining after impact be no more than 4 in (101.6 mm), and that there can be no occupant compartment intrusion. The test results indicate that the 3 -in ($76.2-\mathrm{mm}$) diameter fiberglass sign support with concrete foundations in weak soil meets all of the applicable low-speed safety performance criteria specified by the FHWA.

17. Key Words

Acceleration, occupant impact velocity, weak soil, fiberglass, vehicle, FOIL.

18. Distribution Statement

No restrictions. This document is available to the public through the National Technical Information Service Springfield, Virginia 22161

19. Socurity Classif. (of this report) Unclassified	20. Securty Classif. (of this page) Unclassified	21. No. of Pages 19	22. Price

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names appear in this report only because they are considered essential to the object of the document.

[^0]Table of Contents.

1. SCOPE 1
2. TEST MATRIX 1
3. VEHICLE 1
4. SIGN SUPPORT 1
5. TEST RESULTS - TEST $92 F 035$ 2
6. CONCLUSION 2
7. REFERENCES 15

List of Figures.

Figure No. Page

1. Sketch of small sign support 3
2. Test photographs during impact, test 92 F035 4
3. Summary of test 92F035 5
4. Acceleration versus time, X-axis, test $92 F 035$ 6
5. Velocity versus time, X-axis, test 92 F035 7
6. Force versus displacement, X-axis, test 92 F035 8
7. Occupant velocity and relative displacement versus time, X-axis, test 92F035 9
8. Pretest photographs of test $92 F 035$ 10
9. Additional pretest photographs of test 92 F 035 11
10. Post-test photographs of test 92F035 12
11. Additional post-test photographs of test $92 F 035$ 13
12. Sketch of vehicle crush, test 92F035 14
List of Tables.
Table No.
13. Test matrix 1
14. SCOPE

This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at $20 \mathrm{mi} / \mathrm{h}(32 \mathrm{~km} / \mathrm{h})$, test 92 F 035. The vehicle used for this test was a 1984 Honda Civic. The purpose of this test was to evaluate the low-speed safety performance of a dual-legged fiberglass sign support with concrete foundations in weak soil. The performance evaluation was based on the latest requirements for breakaway supports as specified in Volume 54, Number 3 of the Federal Register dated January 5, 1989. These criteria specify, in part, that the occupant change in velocity must be $16 \mathrm{ft} / \mathrm{s}(4.9 \mathrm{~m} / \mathrm{s})$ or less, that the significant test article stub height remaining after impact be no more than 4 in (101.6 mm), and that there can be no occupant compartment intrusion.

2. TEST MATRIX

The test was performed on a small sign support system. The test speed was $20 \mathrm{mi} / \mathrm{h}(32 \mathrm{~km} / \mathrm{h})$. The sign was buried in NCHRP Report Number 230, S-2 weak soil ${ }^{(1)}$. A summary of the test conditions is presented in table 1 .

Table 1. Test matrix.						
Test Number	Test Vehicle	Test Weight (1b)	Test Speed (mi/h)	Test Article Description	Impact Location	
$92 F 035$	'84 Honda Civic	1850 839 kg	20 $32 \mathrm{~km} / \mathrm{h}$	2 leg fiberglass in concrete	center	

3. VEHICLE

The test vehicle was a 1984 Honda Civic two door hatchback with a manual transmission. Prior to the test, the vehicles' fluids were drained and its inertial properties measured. The vehicle was stripped of certain components which made space for the installation of test equipment. The vehicle was ballasted with a data acquisitions system, transducers, a brake system and weight plates (if necessary) to bring its inertial weight to approximately $1850 \mathrm{lb}(839 \mathrm{~kg})$. The actual weight of the test vehicle was $1850 \mathrm{lb}(839 \mathrm{~kg})$. After ballasting, the vehicles' inertial properties were remeasured.

4. SIGN SUPPORT

The sign support system consisted of two 3 -in (76.2-mm) diameter fiberglass posts $13 \mathrm{ft}(4.0 \mathrm{~m})$ long. Attached to the two fiberglass posts was a $6-\mathrm{ft}$ high by $5.5-\mathrm{ft}$ wide ($1.2-\mathrm{m}$ by $1.7-\mathrm{m}$) aluminum sign panel. The posts were cut to length and the panel attached before installation. Two 12-in ($304.8-\mathrm{mm}$) diameter by $2.5-\mathrm{ft}(0.8-\mathrm{m})$ deep concrete foundations were poured with a 3 -in ($76.2-\mathrm{mm}$) diameter by $2-\mathrm{ft}(0.6-\mathrm{m})$ long steel sleeve cast inside. The sleeve was cast in the concrete such that 2 in (50.8 mm) of the sleeve protruded out of the foundation. A trench $2.5 \mathrm{ft}(0.8 \mathrm{~m})$ deep was dug in the $\mathrm{S}-2$ weak soil. The foundations were set in the hole $3.5 \mathrm{ft}(1.1 \mathrm{~m})$ apart on center and the hole was backfilled with weak soil. The weak soil was added to the hole in 6 -in ($152.4-\mathrm{mm}$) lifts and compacted until the final grade was
reached. After installation of the foundations, the assemble fiberglass sign support was inserted inside the steel sleeves. One $1 / 4-\mathrm{in}(6.4-\mathrm{mm})$ bolt per post was used to couple the fiberglass posts to the steel sleeve. Figure 1 presents a drawing of the sign support system.

5. TEST RESULTS - TEST $92 F 035$

The test vehicle was accelerated to $20.0 \mathrm{mi} / \mathrm{h}(29.3 \mathrm{ft} / \mathrm{s}(32.2 \mathrm{~km} / \mathrm{h})$) prior to impacting the sign support. The centerline of the test vehicle was aligned with the mid point between the two sign posts.

The bumper made contact with both sign legs and the fiberglass posts began to collapse. Immediately after the fiberglass posts began to collapse the vehicle began to ridedown the sign support system. The sign posts wrapped around the vehicle's front end while the vehicle continued to ridedown the posts. Ridedown of the posts continued for the duration of the test. At 0.246 s the sign panel came down on the vehicle, covering the entire front end, the hood, windshield, and a portion of the roof. The impact by the sign panel did cause the windshield to crack in the upper right corner. As the vehicle continued forward, it pulled the panel and posts off the front end and underneath the vehicle. At 0.336 s the sign system was under the vehicle and the two posts were torn in half. The vehicle continued to drag the sign support underneath the vehicle until the vehicle came to a stop. The vehicle came to a stop on top of the sign. The sign stopped the vehicle. The vehicle's brakes were not applied after impact.

Damage to the vehicle consisted of minor damage to the bumper and header panel. The damage was to plastic bumper parts and not to any structural members. The windshield was cracked in one upper corner. The maximum crush measured after the test was recorded to be 3 in (76.2 mm). None of the sign components impaled the occupant compartment.

Damage to the sign consisted of two ripped and frayed fiberglass posts. The sign panel and all hardware were in usable condition after the test. The concrete foundations did not move during the impact event. New posts could be installed in the foundations with no complication.

The occupant impact velocity using the $2-\mathrm{ft}(0.6-\mathrm{m})$ flail space model outlined in NCHRP Report Number 230, was determined to be $13.6 \mathrm{ft} / \mathrm{s}(4.1 \mathrm{~m} / \mathrm{s})$. The occupant impact velocity was reached 0.3185 s into the crash event. The $10-\mathrm{ms}$ ridedown acceleration was determined to be 2.2 g 's. The peak acceleration (300 Hz data) for the impact event was 7.5 g 's (peak force 13.8 kips (61.4 kN)). Because the sign stopped the vehicle, the vehicle change in velocity was equal to the impact velocity. The actual vehicle change in velocity was calculated to be $29.0 \mathrm{ft} / \mathrm{s}(9.0 \mathrm{~m} / \mathrm{s})$.

Photographs during the impact event are presented in figure 2. A summary of the impact conditions and the test results is presented in figure 3. Figures 4 through 7 are plots of data collected during the test. Pre- and post-test photographs of the vehicle and sign support system are presented in figures 8 through 11. Figure 12 is a sketch of the vehicle static crush recorded after the test.

6. CONCLUSION

The test results indicate that the small sign support system meets all of the applicable criteria for the low-speed test in weak soil. There was no occupant compartment intrusion, no significant stub remaining after the test, and the occupant impact velocity was $13.6 \mathrm{ft} / \mathrm{s}(4.1 \mathrm{~m} / \mathrm{s})$ which is less than or equal to the $16 \mathrm{ft} / \mathrm{s}(4.9 \mathrm{~m} / \mathrm{s})$ limit specified by the FHWA.

s 001. 0

1.320 s
Figure 2. Test photographs during impact, test 92F035.

（S．B）レO！7e」ə｜こつつシ

Figure 7. Occupant velocity and relative displacement versus time, X-axis, test 92F035.

$1 \mathrm{in}=25.4 \mathrm{~mm}$

Figure 12. Sketch of vehicle crush, test $92 F 035$.

7. REFERENCES

(1) Jarvis D. Michie, Recommended Procedures for the Safery Performance Evaluation of Highway Appurtenances, National Cooperative Highway Research Program Report Number 230, March 1981.

[^0]: - SI is the symbol lor the International System of Units. Appropriate
 rounding should be made to comply with Section 4 of ASTM E380.

